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The following mathematical problem arises frequently in connection with physical problems:
Given the elements of a determinant A(x) as functions of a variable x, find real values of x for
which A(x) vanishes. Two important examples that come to mind immediately are the
determination of natural frequencies of a continuous structure, such as a beam, plate or shell,
and the search for eigenvalues of a constant, real, symmetric matrix (where the eigenvalues
play the role of x). This Note deals with a simple method for finding x. a methodthat frees onefrom
having to expand A in literal form, which becomes an important consideration when Ais large.

Let y(7') denote a function of a variable 7', let k be any constant, and require that

and

y(O) = k

A[y(7')] =(l-7')A(k).

(1)

(2)

Then y(l) satisfies A[y(1)] = 0, which means that y(1) is precisely one of the values of x being
sought. To find y(1), proceed as follows: Differentiate eqn (2) with respect to 1', solve the
resulting equation for dy/dt, obtaining

~ __ A(k)
d7' - dA

dy

(3)

and integrate this equation numerically from l' =0 to 7' =I, using eqn (1) as an initial condition,
and assigning to k a value in the vicinity of an expected value of x.

The characteristic equation for a cantilever beam of length L, ftexural rigidity 81, and mass
per unit of length p, which can be written

A(x) ~, sin x+ sinh x C?s x+ ~osh x, = 0
cos x + cosh x - SID X + smh x

(4)

furnishes an illustrative example. Replacing x with y in eqn (4), and differentiating with respect
to y, one arrives at

dA -ICOS y + cosh y - sin y+ sinh yI+I sin y + sinh y cos y + cosh y, (5)
dy - cos y+cosh y -sin y + sinh y -sin y + sinh y -cos y+cosh y

so that, since the first determinant on the right-hand side is equal to zero, substitution from eqns
(4) and (5) into eqn (3) yields

SA$ 18:2 ... F

Isin k + sinh k
dy cos k + cosh k
d1' = I sin y+ sinh y

-siny+sinhy
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COSk+COShkl
- sin k + sinh k

cos y + cosh y,'
-cos y +cosh y

(6)
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Table I.

Line k x !Mx)!

1 1.00000000 1.87437055 6 , 10-3

2 1.87437055 1.87584140 6 x 10-3

3 1.87564140 1.87510652 2 ~ 10-5

4 1.87510652 1.87510284 1 ~ 10-5

5 1.87510284 1.87510406 < 10-6

6 4.00000000 4.69360687 5 )( 10-2

7 4.69360687 4.69461382 5 )( 10-2

8 4.69461382 4.69409282 2 , 10-4

9 4.69409282 4.69409026 9 " 10-
5

10 4.69409026 4.69409112 < 10-6

11 7.00000000 4.70582236 1

12 4.70582236 4.68123089 1

13 4.68123089 4.69405020 4 " 10-
3

14 4.69405020 4.69411222 2 , 10-3

15 4.69411222 4.69409124 9 , 10-6

16 4.69409124 4.69409111 < 10-6

17 11 •00000000 10.9955517 6 " 10-
1

18 10.9955517 10.9955348 3 X 10-1

19 10.9955348 10.9955391 < 10-6

Numerical integration of this equation, from T = 0 to T = 1, with y(O) = k, leads to the values
recorded in Table 1.

The values of k listed in lines 1,6, 11 and 17 were chosen arbitrarily, whereas each of the
remaining k's is simply equal to the x on the preceding line, a choice that can be automated
easily and that leads to good results rather quickly, as is apparent from the associated rapid
decreases in Id(x)l. The fact that many choices of k can lead to the same value of x (see lines 6
and 11 for k and lines 10 and 16 for the corresponding values of x) means that one need not
possess great prescience to make a suitable choice for k. Moreover. in order to find a particular
root of b.(x) = 0, one does not need to use the method more than once. The accuracy of the
result one obtains from a single application of the method depends both on the proximity of k to
the root in question and on the quality of the integration algorithm being employed. (The results
in Table 1 were generated with a rather crude integrator on a desktop computer.)

The ideas underlying the method here set forth are the same as those employed in [1] to solve
sets of nonlinear equations. They have been employed also by Shippy[2] to find eigenvalues and
eigenvectors.
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